РАЗДЕЛ 11. ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ И ФУНКЦИЙ ОРГАНИЗМА
VII. Регуляция обмена ионов кальция и фосфатов
В организме взрослого человека содержится в среднем 1000 г кальция. Основным депо кальция в организме (99% всего кальция от общей массы) являются кости. В костях около 99% кальция присутствует в малорастворимой форме кристаллов гидроксиапатита [Са10(РО4)6(ОН)2Н2О]. В виде фосфатных солей в костях находится лишь 1% кальция, который может легко обмениваться и играть роль буфера при изменениях концентрации кальция в плазме крови. Другой фонд кальция (1% от общей массы кальция) — кальций плазмы крови. В плазму крови кальций поступает из кишечника (с водой и пищей) и из костной ткани (в процессе резорбции).
Кальций — не только структурный компонент костной ткани. Ионы кальция играют ключевую роль в мышечном сокращении, увеличивают проницаемость мембраны клеток для ионов калия, влияют на натриевую проводимость клеток, на работу ионных насосов, способствуют секреции гормонов, участвуют в каскадном механизме свёртывания крови. Кроме этого, они служат важнейшими посредниками во внутриклеточной передаче сигналов.
Концентрация кальция внутри клеток зависит от его концентрации во внеклеточной жидкости. Пределы колебаний общей концентрации Са2+ в плазме крови здоровых людей составляют 2,12 — 2,6 ммоль/л, или 9 — 11 мг/дт. Кальций плазмы крови представлен в виде:
• несвязанного, ионизированного кальция (около 50%);
• ионов кальция, соединённых с белками, главным образом, с альбумином (45%);
• недиссоциирующих комплексов с цитратом, сульфатом, фосфатом и карбонатом (5%).
Биологически активной фракцией является ионизированный кальций, концентрация которого поддерживается в пределах 1,1 — 1,3 ммоль/л.
Изменение уровня кальция может привести к нарушению многих процессов: изменению порога возбудимости нервных и мышечных клеток, нарушению функционирования кальциевого насоса, снижению активности ферментов и нарушению гормональной регуляции метаболизма. Концентрация Са2+ в плазме регулируется с высокой точностью: изменение её всего на 1 % приводит в действие гомеостатические механизмы, восстанавливающие равновесие.
Основными регуляторами обмена Са2+ в крови являются паратгормон, кальцитриол и кальцитонин.
А. Паратгормон
Паратгормон (ПТГ) — одноцепочечный полипептид, состоящий из 84 аминокислотных остатков (около 9,5 кД), действие которого направлено на повышение концентрации ионов кальция и снижение концентрации фосфатов в плазме крови.
1. Синтез и секреция ПТГ
ПТГ синтезируется в паращитовидных железах в виде предшественника — препрогормона, содержащего 115 аминокислотных остатков. Во время переноса в ЭР от препрогормона отщепляется сигнальный пептид, содержащий 25 аминокислотных остатков. Образующийся прогормон транспортируется в аппарат Гольджи, где происходит превращение предшественника в зрелый гормон, включающий 84 аминокислотных остатка (ПТГ,1-84). Паратгормон упаковывается и хранится в секреторных гранулах (везикулах). Интактный паратгормон может расщепляться на короткие пептиды: N-концевые, С-концевые и срединные фрагменты. N-конце- вые пептиды, содержащие 34 аминокислотных остатка, обладают полной биологической активностью и секретируются железами наряду со зрелым паратгормоном. Именно N-концевой пептид отвечает за связывание с рецепторами на клетках-мишенях. Роль С-концевого фрагмента точно не установлена. Скорость распада гормона уменьшается при низкой концентрации ионов кальция и увеличивается, если концентрация ионов кальция высока.
Секреция ПТГ регулируется уровнем ионов кальция в плазме: гормон секретируется в ответ на снижение концентрации кальция в крови.
2. Роль паратгормона в регуляции обмена кальция и фосфатов
Органы-мишени для ПТГ — кости и почки. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клетки возрастает концентрация молекул цАМФ, действие
которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.
В костной ткани рецепторы ПТГ локализованы на остеобластах и остеоцитах, но не обнаружены на остеокластах. При связывании паратгормона с рецепторами клеток-мишеней остеобласты начинают усиленно секретировать инсулиноподобный фактор роста 1 и цитокины. Эти вещества стимулируют метаболическую активность остеокластов. В частности, ускоряется образование ферментов, таких как щелочная фосфатаза и коллагеназа, которые воздействуют на компоненты костного матрикса, вызывают его распад, в результате чего происходит мобилизация Са2+ и фосфатов из кости во внеклеточную жидкость (рис. 11-37).
Рис. 11-37. Биологическое действие паратгормона. 1 — стимулирует мобилизацию кальция из кости; 2 — стимулирует реабсорбцию ионов кальция в дистальных канальцах почек; 3 — активирует образование кальцитриола, 1,25(OН)2D3 в почках, что приводит к стимуляции всасывания Са2+ в кишечнике; 4 — повышает концентрацию кальция в межклеточной жидкости, тормозит секрецию ПТГ. МКЖ — межклеточная жидкость.
В почках ПТГ стимулирует реабсорбцию кальция в дистальных извитых канальцах и тем самым снижает экскрецию кальция с мочой, уменьшает реабсорбцию фосфатов.
Кроме того, паратгормон индуцирует синтез кальцитриола (1,25(OН)2D3), который усиливает всасывание кальция в кишечнике.
Таким образом, паратгормон восстанавливает нормальный уровень ионов кальция во внеклеточной жидкости как путём прямого воздействия на кости и почки, так и действуя опосредованно (через стимуляцию синтеза кальцитриола) на слизистую оболочку кишечника, увеличивая в этом случае эффективность всасывания Са2+ в кишечнике. Снижая реабсорбцию фосфатов- из почек, паратгормон способствует уменьшению концентрации фосфатов во внеклеточной жидкости.
3. Гиперпаратиреоз
Вторичный гиперпаратиреоз встречается при хронической почечной недостаточности и дефиците витамина D3и сопровождается гипокальциемией, связанной в основном с нарушением всасывания кальция в кишечнике из-за угнетения образования кальцитриола поражёнными почками. В этом случае секреция паратгормона увеличивается. Однако повышенный уровень паратгормона не может нормализовать концентрацию ионов кальция в плазме крови вследствие нарушения синтеза кальцитриола и снижения всасывания кальция в кишечнике. Наряду с гипокальциемией, нередко наблюдают гиперфостатемию. У больных развивается повреждение скелета (остеопороз) вследствие повышения мобилизации кальция из костной ткани. В некоторых случаях (при развитии аденомы или гиперплазии околощитовидных желёз) автономная гиперсекреция паратгормона компенсирует гипокальциемию и приводит к гиперкальциемии (третичный гиперпаратиреоз).
4. Гипопаратиреоз
Основной симптом гипопаратиреоза, обусловленный недостаточностью паращитовидных желёз, — гипокальциемия. Понижение концентрации ионов кальция в крови может вызвать неврологические, офтальмологические нарушения и нарушения ССС, а также поражения соединительной ткани. У больного гипопаратиреозом отмечают повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм.
Б. Кальцитриол
Как и другие стероидные гормоны, кальцитриол синтезируется из холестерола.
Действие гормона направлено на повышение концентрации кальция в плазме крови.
1. Строение и синтез кальцитриола
В коже 7-дегидрохолестерол (провитамин D3) превращается в непосредственного предшественника кальцитриола — холекальциферол (витамин D3). В ходе этой неферментативной реакции под влиянием УФ-излучения связь между девятым и десятым атомами углерода в молекуле холестерола разрывается, раскрывается кольцо В, и образуется холекальциферол (рис. 11-38). Так образуется в организме человека большая часть витамина D3, однако небольшое его количество поступает с пищей и всасывается в тонком кишечнике вместе с другими жирорастворимыми витаминами.
Рис. 11-38. Схема синтеза кальцитриола. 1 — холестерол является предшественником кальцитриола; 2 — в коже 7-дегидрохолестерол неферментативно превращается в холекальциферол; 3 — в печени 25-гидроксилаза превращает холекальциферол в кальцидиол; 4 — в почках образование кальцитриола катализируется 1α-гидроксилазой.
В эпидермисе холекальциферол связывается со специфическим витамин D-связывающим белком (транскальциферином), поступает в кровь и переносится в печень, где происходит гидроксилирование по 25-му атому углерода с образованием кальцидиола [25-гидроксихолекальциферол, 25(ОН)D3]. В комплексе с витамин D-связывающим белком кал ьцид иол транспортируется в почки и гидроксилируется по первому углеродному атому с образованием кальцитриола [1,25(ОН)2D3]. Именно 1,25(ОН)2D3представляет собой активную форму витамина D3.
Гидроксилирование, протекающее в почках, является скорость-лимитирующей стадией. Эта реакция катализируется митохондриальным ферментом 1α-гидроксилазой. Паратгормон индуцирует 1α-гидроксилазу, тем самым стимулируя синтез 1,25(ОН)2D3. Низкая концентрация фосфатов и ионов Са2+ в крови также ускоряет синтез кальцитриола, причём ионы кальция действуют опосредованно через паратгормон.
При гиперкальциемии активность 1α-гидроксилазы снижается, но повышается активность 24α-гидроксилазы. В этом случае увеличивается продукция метаболита 24,25(ОН)2D3, который, возможно, и обладает биологической активностью, но роль его окончательно не выяснена.
2. Механизм действия кальцитриола
Кальцитриол оказывает воздействие на тонкий кишечник, почки и кости. Подобно другим стероидным гормонам, кальцитриол связывается с внутриклеточным рецептором клетки- мишени. Образуется комплекс гормон-рецептор, который взаимодействует с хроматином и индуцирует транскрипцию структурных генов, в результате чего синтезируются белки, опосредующие действие кальцитриола. Так, например, в клетках кишечника кальцитриол индуцирует синтез Са2+-переносящих белков, которые обеспечивают всасывание ионов кальция и фосфатов из полости кишечника в эпителиальную клетку кишечника и далее транспорт из клетки в кровь, благодаря чему концентрация ионов кальция во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани. В почках кальцитриол стимулирует реабсорбцию ионов кальция и фосфатов. При недостатке кальцитриола нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в органическом матриксе костной ткани, что приводит к развитию рахита и остеомаляции. Обнаружено также, что при низкой концентрации ионов кальция кальцитриол способствует мобилизации кальция из костной ткани.
3. Рахит
Рахит — заболевание детского возраста, связанное с недостаточной минерализацией костной ткани. Нарушение минерализации кости — следствие дефицита кальция. Рахит может быть обусловлен следующими причинами: недостатком витамина D3 в пищевом рационе, нарушением всасывания витамина D3 в тонком кишечнике, снижением синтеза предшественников кальцитриола из-за недостаточного времени пребывания на солнце, дефектом 1а-гидроксилазы, дефектом рецепторов кальцитриола в клетках- мишенях. ё это вызывает снижение всасывания кальция в кишечнике и снижение его концентрации в крови, стимуляцию секреции паратгормона и вследствие этого мобилизацию ионов кальция из кости. При рахите поражаются кости черепа; грудная клетка вместе с грудиной выступает вперёд; деформируются трубчатые кости и суставы рук и ног; увеличивается и выпячивается живот; задерживается моторное развитие. Основные способы предупреждения рахита — правильное питание и достаточная инсоляция.
В. Роль кальцитонина в регуляции обмена кальция
Кальцитонин — полипептид, состоящий из 32 аминокислотных остатков с одной дисуль- фидной связью. Гормон секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации Са2+ и уменьшается при понижении концентрации Са2+ в крови. Кальцитонин — антагонист паратгормона. Он ингибирует высвобождение Са2+ из кости, снижая активность остеокластов. Кроме того, кальцитонин подавляет канальцевую реабсорбцию ионов кальция в почках, тем самым стимулируя их экскрецию почками с мочой. Скорость секреции кальцитонина у женщин сильно зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает ускорение мобилизации кальция из костной ткани, что приводит к развитию остеопороза.
Источник: lifelib.info
Паратгормон (греч. para около + лат. [glandula] thyroidea щитовидная железа + гормон[ы]; син.: паратиреоидный гормон, паратиреокрин, паратирин) — полипептидный гормон, продуцируемый паращитовидными железами и регулирующий обмен кальция и фосфора. Паратгормон повышает содержание кальция и снижает содержание фосфора (фосфатов) в крови (см. Минеральный обмен). Антагонистом Паратгормона является кальцитонин (см.), вызывающий снижение концентрации кальция в крови. Органами-мишенями для Паратгормона служат скелет и почки, кроме того, Паратгормон оказывает влияние на кишечник, где он усиливает всасывание кальция. В костях Паратгормон активирует резорбтивные процессы. Резорбция костного минерала — оксиапатита — сопровождается поступлением входящих в его состав кальция и фосфата в кровь. С этим действием П. связано повышение содержания кальция в крови (см. Гиперкальциемия). Одновременно с растворением костного минерала происходит резорбция и органического матрикса кости, состоящего гл. обр. из коллагеновых волокон и гликозаминогликанов. Это приводит, в частности, к увеличению выведения с мочой оксипролина, типичного компонента коллагена (см.). В почках П. существенно уменьшает реабсорбцию фосфата в дистальных отделах нефрона и несколько увеличивает реабсорбцию кальция. Значительное возрастание экскреции фосфата с мочой вызывает понижение содержания фосфора в крови. Несмотря на нек-рое усиление реабсорбции кальция в почечных канальцах под влиянием П., выделение кальция с мочой вследствие быстро нарастающей гиперкальциемии в конечном счете увеличивается. Важной стороной действия П. на почки является стимуляция образования в них активного метаболита витамина D — 1,25-диоксихолекальциферола. Это соединение в значительно большей степени увеличивает всасывание кальция из кишечника, чем сам витамин D. T. о., действие П. на всасывание кальция из кишечника может быть не прямым, а косвенным.
По хим. структуре Паратгормон представляет собой одноцепочечный полипептид, состоящий из 84 аминокислотных остатков и имеющий мол. вес (массу) ок. 9500. Последовательность аминокислотных остатков полностью расшифрована для П. крупного рогатого скота и свиньи; в молекуле П. человека установлена последовательность 37 аминокислот N-концевого участка полипептидной цепи. Видовые различия в молекуле П. незначительны. Осуществлен хим. синтез фрагмента молекулы П. человека и животных, содержащего 34 аминокислотных остатка и в значительной степени обладающего биол, активностью нативного П., т. о. доказано, что для проявления биол, активности П. наличие всей его молекулы не обязательно.
Биосинтез П. начинается с синтеза его предшественника — препропаратгормона (полипептид, состоящий у крупного рогатого скота из 115 аминокислотных остатков). В результате действия специфических протеолитических ферментов от N-конца молекулы предшественника П. отщепляется пептид из 25 аминокислот и образуется малоактивный в гормональном отношении продукт — пропаратгормон, к-рый после протеолитического отщепления N-концевого гексапептида превращается в активный П., секретируемый в кровь.
Секреция П. регулируется концентрацией в крови ионизированного Ca2+ по принципу обратной связи: при снижении концентрации ионов Ca2+ увеличивается выброс в кровь П. и наоборот.
Основным местом катаболизма П. являются почки и печень; период полужизни активного П. в крови составляет ок. 18 мин. В крови П. быстро расщепляется на фрагменты (пептиды и олигопептиды), значительная часть к-рых обладает антигенными свойствами гормона, но лишена его биологической активности.
На начальном этапе действия П., как и других белково-пептидных гормонов (см.), принимают участие специфический рецептор плазматической мембраны клеток-мишеней, фермент аденилатциклаза (КФ 4.6. 1.1), циклический 3′,5′-АМФ и протеинкиназа (КФ 2.7.1.37). Активация аденилатциклазы приводит к образованию внутри клеток циклического 3′,5′-АМФ, к-рый активирует фермент протеинкиназу, осуществляющую реакцию фосфорилирования функционально важных белков, и таким образом «запускает» ряд биохим, реакций, обусловливающих в конечном счете физиологический эффект П. Увеличение содержания П. в крови при гиперпаратиреозе любой этиологии (см. Гиперпаратиреоз) вызывает нарушение фосфорно-кальциевого обмена, происходит усиленное выделение кальция из костей, аномально высокое выведение его с мочой, отмечается гиперкальциемия разной степени.
При недостатке или полном отсутствии Паратгормона картина нарушений фосфорно-кальциевого обмена противоположна картине нарушений этого обмена при гиперпаратиреозе. Понижение содержания кальция во внеклеточной жидкости ведет к резкому усилению возбудимости нервно-мышечной системы и, как следствие, может привести к тетании (см.).
При гипопаратиреозе (см.), тетании, спазмофилии, различных аллергических заболеваниях в качестве лекарственного средства применяют паратиреоидин (см.).
Содержание П. в крови определяют биологическим и радиоиммунологическим методами.
Биологические методы определения Паратгормона основаны на его способности повышать содержание кальция в крови у экспериментальных животных (паратиреоидэктомированных крыс, цыплят, собак), а также увеличивать у них экскрецию фосфата и циклического 3′,5′-АМФ с мочой. Кроме того, биол, тестом на П. является усиление под его влиянием резорбции костной ткани in vitro, стимуляция активности аденилатциклазы в корковом веществе почек, увеличение концентрации эндогенного циклического 3′,5′-АМФ в костной ткани или подавление образования в ней CO2 из цитрата.
Определение содержания П. в крови радиоиммунологическим методом (см.) не показывает истинного содержания в крови биологически активного П., т. к. нек-рые продукты его катаболизма не теряют специфических антигенных свойств, присущих нативному гормону, но этот метод позволяет судить об общем уровне активности паращитовидных желез.
Стандартизацию биол, активности препаратов П. осуществляют путем ее сопоставления с активностью международного стандартного препарата П. Активность П. выражается в условных единицах действия — МВС (Medical Research Council) ЕД.
Высокой чувствительностью отличается метод определения П., основанный на его способности активировать глюкозо-6-фосфат-дегидрогеназу (КФ 1.1.1.49) дистальных отделов нефрона коркового вещества почек морских свинок in vitro. Определенное этим методом содержание активного Паратгормона в плазме крови здоровых людей находится в пределах от 6•10-6 до 10•10-5 ЕД/мл.
См. также Паращитовидные железы.
Библиография: Булатов А. А. Паратгормон и кальцитонин, в кн.: Биохимия гормонов и гормональной регуляции, под ред. Н. А. Юдаева, с. 126,М., 1976; Машковский М. Д. Лекарственные средства, ч. 1, с. 555, М., 1977; Романенко В. Д. Физиология кальциевого обмена, Киев, 1975; Руководство по клинической эндокринологии, под ред. В. Г. Баранова, с. 7, Д., 1977; Стуккей А. Л. Околощитовидные железы, в кн.: Физиол, эндокринной системы, под ред. В. Г. Баранова, с. 191, Д., 1979; Сhambers D. J. a. o. A sensitive bioassay of parathyroid hormone in plasma, Clin. Endocr., v. 9, p. 375, 1978; Labhart A. Klinik der inneren Sekretion, B. u. a., 1978; Parsons J. A. a. Potts J. T. Physiology and chemistry of parathyroid hormone, Clin. Endocr. Metab., v. 1, p. 33, 1972; Schneider A. B. a. Sherwood L. M. Calcium homeostasis and the pathogenesis and management of hypercalcemic disorders, Metabolism, v. 23, p. 975, 1974, bibliogr.
A. А. Булатов.
Источник: xn--90aw5c.xn--c1avg
Действие паратгормона на почки
В дистальном нефроне расположены как рецепторы паратгормона, так и кальциевые рецепторы, что позволяет внеклеточному Са++ оказывать не только прямой (через кальциевые рецепторы), но и опосредованный, (через модуляцию уровня паратгормона в крови) эффект на почечный компонент кальциевого гомеостаза. Внутриклеточным медиатором действия паратгормона выступает ц-АМФ, экскреция которого с мочой является биохимическим маркером активности околощитовидных желез. Почечные эффекты действия паратгормона включают:
- увеличение реабсорбции Са++ в дистальных канальцах (в то же время при избыточном выделении паратгормона экскреция Са++ с мочой возрастает из-за увеличения фильтрации кальция вследствие гиперкальциемии);
- увеличение экскреции фосфата (действуя на проксимальные и дистальные канальцы, паратгормон ингибирует Na-зависимый транспорт фосфата);
- увеличение экскреции бикарбоната из-за угнетения его реабсорбции в проксимальных канальцах, что приводит к ощелачиванию мочи (а при избыточной секреции паратгормона — к определенной форме тубулярного ацидоза вследствие интенсивного выведения из канальцев щелочного аниона);
- увеличение клиренса свободной воды и, тем самым, объема мочи;
- увеличение активности витамин D-la-гидроксилазы, синтезирующей активную форму витамина D3, которая катализирует механизм всасывания кальция в кишечнике, таким образом влияя на дигестивную составляющую обмена кальция.
Соответственно с выше изложенным при первичном гиперпаратиреозе вследствие избыточного действия паратгормона его почечные эффекты будут проявляться в виде гиперкальцийурии, гипофосфатемии, гиперхлоремического ацидоза, полиурии, полидипсии и увеличенной экскреции нефрогенной фракции цАМФ.
Действие паратгормона на кости
Паратгормон оказыает как анаболический, так и катаболический эффекты на костную ткань, которые могут быть разграничены как ранняя фаза действия (мобилизация Са++ из костей для быстрого восстановления баланса с внеклеточной жидкостью) и поздняя фаза, во время которой стимулируется синтез костных ферментов (таких как лизосомальные энзимы), промотирующих резорбцию и ремоделирование костной ткани. Первичной точкой приложения паратгормона в костях являются остеобласты, так как остеокласты, по-видимому, не имеют рецепторов паратгормона. Под действием паратгормона остеобласты вырабатывают разнообразные медиаторы, среди которых особое место занимают провоспалительный цитокин интерлейкин-6 и фактор дифференцировки остеокластов, оказывающие мощное стимулирующее действие на дифференциацию и пролиферацию остеокластов. Остеобласты могут также тормозить функцию остеокластов, вырабатывая остеопротегерин. Таким образом, резорбция костей остеокластами стимулируется опосредованно через остеобласты. При этом увеличивается высвобождение щелочной фосфатазы и экскреция с мочой гидроксипролина — маркера разрушения костного матрикса.
Уникальное двойственное действие паратгормона на костную ткань было открыто еще в 30-е годы XX века, когда удалось установить не только резорбтивное, но и анаболическое действие его на костную ткань. Однако лишь 50 лет спустя на основе экспериментальных исследований с рекомбинантным паратгормоном стало известно, что длительное постоянное влияние избытка паратгормона оказывает остеорезорбтивное действие, а пульсовое интермиттирующее поступление его в кровь стимулирует ремоделирование костной ткани . На сегодняшний день только препарат синтетического паратгормона (teriparatide) обладает лечебным эффектом в отношении остеопороза (а не просто приостанавливает его прогрессирование) из числа разрешенных к применению FDA США.
Действие паратгормона на кишечник
Пратгормон не оказывает прямого действия на желудочно-кишечную абсорбцию кальция. Эти эффекты его опосредуются через регуляцию синтеза активного (l,25(OH)2D3) витамина D в почках.
Другие эффекты паратгормона
В опытах in vitro были обнаружены и другие эффекты паратгормона, физиологическая роль которых еще не вполне понятна. Так, выяснена возможность изменения кровотока в сосудах кишечника, усиления липолиза в адипоцитах, увеличения глюконеогенеза в печени и почках.
Витамин D3, уже упомянутый выше, является вторым сильным гуморальным агентом в системе регуляции кальциевого гомеостаза. Его мощное однонаправленное действие, вызывающее повышение всасывания кальция в кишечнике и увеличение концентрации Са++ в крови, оправдывает другое название этого фактора — гормон D. Биосинтез витамина D представляет собой сложный многоэтапный процесс. В крови человека могут одновременно находиться около 30 метаболитов, дериватов или предшественников наиболее активной 1,25(ОН)2-дигидроксилированной формы гормона. Первым этапом синтеза является гидроксилирование в положении 25 углеродного атома стирольного кольца витамина D, который или поступает с пищей (эргокальциферол) или образуется в коже под влиянием ультрафиолетовых лучей (холекальциферол). На втором этапе происходит повторное гидроксилирование молекулы в положении 1а специфическим ферментом проксимальных почечных канальцев — витамин D-la-гидроксилазой. Среди множества дериватов и изоформ витамина D лишь три обладают выраженной метаболической активностью — 24,25(OH)2D3, l,24,25(OH)3D3 и l,25(OH)2D3, однако только последний действует однонаправленно и в 100 раз сильнее остальных вариантов витамина. Действуя на специфические рецепторы ядра энтероцита, витамин Dg стимулирует синтез транспортного белка, осуществляющего перенос кальция и фосфата через клеточные мембраны в кровь. Обратная отрицательная связь концентрации 1,25(ОН)2 витамина Dg и активности lа-гидроксилазы обеспечивает ауторегуляцию, не допускающую переизбытка активного витамина D4.
Существует также умеренный остеорезорбтивный эффект витамина D, который проявляется исключительно в присутствии паратгормона. Витамин Dg оказывает также тормозящее дозозависимое обратимое действие на синтез паратгормона околощитовидными железами.
Кальцитонин является третьим из основных компонентов гормональной регуляции обмена кальция, однако действие его намного слабее предыдущих двух агентов. Кальцитонин представляет собой 32 аминокислотный белок, который секретируется парафолликулярными С-клетками щитовидной железы в ответ на повышение концентрации внеклеточного Са++. Его гипокальциемическое действие осуществляется через ингибирование активности остеокластов и увеличение экскреции кальция с мочой. До сих пор физиологическая роль кальцитонина у человека окончательно не установлена, так как оказываемый им эффект на кальциевый обмен является незначительным и перекрывается другими механизмами. Полное отсутствие кальцитонина после тотальной тиреоидэктомии не сопровождается физиологическими отклонениями и не требует заместительной терапии. Значительный избыток этого гормона, например, у больных медуллярным раком щитовидной железы, не приводит к существенным нарушениям кальциевого гомеостаза.
Регуляция секреции паратгормона в норме
Основным регулятором скорости секреции паратгормона является внеклеточный кальций. Даже небольшое снижение концентрации Са++ в крови вызывает мгновенное увеличение секреции паратгормона. Этот процесс зависит от выраженности и длительности гипокальциемии. Первичное кратковременное снижение концентрации Са++ приводит к высвобождению накопленного в секреторных гранулах паратгормона в течение первых нескольких секунд. Через 15-30 мин длительности гипокальциемии увеличивается также истинный синтез паратгормона. Если стимул продолжает действовать, то в течение первых 3-12 часов (у крыс) наблюдается умеренное повышение концентрации матричной РНК гена паратгормона. Продолжительная гипокальциемия стимулирует гипертрофию и пролиферацию паратиреоцитов, обнаруживаемую через несколько дней-недель.
Кальций действует на околощитовидные железы (и другие эффекторные органы) через специфические кальциевые рецепторы. Впервые предположил существование подобных структур Brown в 1991г., а позднее рецептор был выделен, клонирован, изучены его функции и распределение. Это первый из рецепторов, обнаруженных у человека, который распознает непосредственно ион, а не органическую молекулу.
Человеческий Са++-рецептор кодируется геном на хромосоме 3ql3-21 и состоит из 1078 аминокислот. Молекула белка-рецептора состоит из большого N-концевого внеклеточного отрезка, центрального (мембранного) ядра и короткого С-концевого внутрицитоплазматического хвоста.
Открытие рецептора позволило объяснить происхождение семейной гипокальциурической гиперкальциемии (обнаружено уже более 30 различных мутаций гена рецептора у носителей этой болезни). Активирующие Са++-рецептор мутации, приводящие к семейному гипопаратиреозу, также были установлены недавно.
Са++-рецептор широко экспрессирован в организме, причем не только на органах, участвующих в метаболизме кальция (околощитовидные железы, почки, С-клетки щитовидной железы, клетки костной ткани), но и на других органах (гипофиз, плацента, кератиноциты, молочные железы, гастрин-секретирующие клетки).
Недавно обнаружен другой мембранный кальциевый рецептор, расположенный на паратиреоцитах, плаценте, проксимальных почечных канальцах, роль которого еще требует дальнейшего изучения кальциевого рецептора.
Среди других модуляторов секреции паратгормона следует отметить магний. Ионизированный магний обладает действием на секрецию паратгормона, подобным действию кальция, но гораздо менее выраженным. Высокий уровень Mg++ в крови (может встречаться при почечной недостаточности) приводит к угнетению секреции паратгормона. В то же время гипомагнезиемия вызывает не увеличение секреции паратгормона, как следовало бы ожидать, а парадоксальное ее снижение, что, очевидно, связано с внутриклеточным угнетением синтеза паратгормона при недостатке ионов магния.
Витамин D, как уже говорилось, также непосредственно влияет на синтез паратгормона через генетические транскрипционные механизмы. Кроме того, 1,25-(ОН) D супрессирует секрецию паратгормона при низком сывороточном кальции и увеличивает внутриклеточную деградацию его молекулы.
Другие гормоны человека оказывают определенное модулирующее действие на синтез и секрецию паратгормона. Так, катехоламины, действуя в основном через 6-адренэргические рецепторы, усиливают секрецию паратгормона. Это особенно выражено при гипокальциемии. Антагонисты 6-адренорецепторов в норме снижают концентрацию паратгормона в крови, однако при гиперпаратиреозе этот эффект оказывается минимальным в силу изменения чувствительности паратиреоцитов.
Глюкокортикоиды, эстрогены и прогестерон стимулируют секрецию паратгормона. Кроме того, эстрогены могут модулировать чувствительность паратиреоцитов к Са++, влияют стимулирующе на транскрипцию гена паратгормона и его синтез.
Секреция паратгормона регулируется также ритмом его высвобождения в кровь. Так, помимо стабильной тонической секреции установлено пульсовой выброс его, занимающий в общей сложности 25 % всего объема. При остро возникающей гипокальциемии или гиперкальциемии первой реагирует именно пульсовая составляющая секреции, а затем, после первых 30 минут, реагирует и тоническая секреция.
Источник: tktnsk.ru